Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Prediction grids of pH for the Mississippi River Valley Alluvial and Claiborne Aquifers

Metadata Updated: October 29, 2023

Groundwater is a vital resource to the Mississippi embayment region of the central United States. Regional and integrated assessments of water availability that link physical flow models and water quality in principal aquifer systems provide context for the long-term availability of these water resources. An innovative approach using machine learning was employed to predict groundwater pH across drinking water aquifers of the Mississippi embayment. The region includes two principal regional aquifer systems; the Mississippi River Valley alluvial (MRVA) aquifer and the Mississippi embayment aquifer system that includes several regional aquifers and confining units. Based on the distribution of groundwater use for drinking water, the modeling effort was focused on the MRVA, Middle Claiborne aquifer (MCAQ), and Lower Claiborne aquifer (LCAQ)of the Mississippi embayment aquifer system. Boosted regression tree (BRT) models (Elith and others, 2008; Kuhn and Johnson, 2013) were used to predict pH to 1-km raster grid cells of the National Hydrologic Grid (Clark and others, 2018). Predictions were made for 7 aquifer layers (1 MRVA, 4 MCAQ, 2 LCAQ) following the hydrogeologic framework used in a regional groundwater flow model (Hart and others, 2008). Explanatory variables for the BRT models included attributes associated with well position and construction, surficial variables, and variables extracted from a MODFLOW groundwater flow model for the MISE (Haugh and others, 2020a,b). For a full description of modeling workflow see Knierim and others (2020).

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date June 1, 2023
Metadata Updated Date October 29, 2023

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 1, 2023
Metadata Updated Date October 29, 2023
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/7a41f27f67efa4fd8c49b85df6015d14
Identifier USGS:5d77ee28e4b0c4f70d020b78
Data Last Modified 20200922
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 1136cfee-1f01-4ade-8d09-8f381f555565
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -94.1084,31.1998,-86.76,37.4605
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash dce2c7d4adcf5cdbbf5a232d3c55727cfbc7861f84396cde0624d3ff033b1cad
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -94.1084, 31.1998, -94.1084, 37.4605, -86.76, 37.4605, -86.76, 31.1998, -94.1084, 31.1998}

Didn't find what you're looking for? Suggest a dataset here.